
J .  FZuid Mech. (1979), vol. 94, part 2, pp .  331-361 

Prin&d in &eat Britain 
331 

The hydrodynamics of flagellar propulsion: helical waves 

By J. J. L. HIGDON 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge? 

(Received 1 December 1978) 

The swimming of a micro-organism by the propagation of helical waves on a long 
slender flagellum is analysed. The model developed by Higdon (1979) is used to 
study the motion of an organism with a spherical cell body (radius A )  propelled by a 
cylindrical flagellum (radius a, length L). 

The average swimming speed and power consumption are calculated for helical 
waves (amplitude a, wavenumber k). A wide range of parameter values is considered 
to determine the optimal swimming motion. The optimal helical wave has ak w 1, 
corresponding to a pitch angle of 45". The optimum number of waves on the flagellum 
increases as the flagellar length LIA increases, such that the optimum wavelength 
decreases as LIA increases. The efficiency is relatively insensitive to the flagellar 
radius a/A. The optimum flagellar length is LIA M 10. 

The results are compared to calculations using two different forms of resistance 
coefficients. Gray-Hancock coefficients overestimate the swimming speed by approxi- 
mately 20% and underestimate the power consumption by 50%. The coefficients 
suggested by Lighthill (1976) overestimate the swimming speed for large cell bodies 
(L/A < 15) by 20% and underestimate for small cell bodies (LIA > 15) by 10%. 
The Lighthill coefficients underestimate the power consumption up to 50% for 
LIA < 10, and overestimate up to 25% for LIA > 10. Overall, the Lighthill coeffi- 
cients are superior to the Gray-Hancock coefficients in modelling swimming by helical 
waves. 

1. Introduction 
The swimming of micro-organisms by flagellar propulsion was analysed by Higdon 

(1979, henceforth referred to as I). In that paper, a method was presented for modelling 
the swimming of organisms employing general three-dimensional waves. The model 
was applied to organisms using planar waves to determine the effects of the para- 
meters on the swimming speed and efficiency. In  the present work, the model is 
applied to organisms employing three-dimensional waves; specifically, helical waves. 

We consider an organism with a spherical cell body, radius A, propelled by a single 
flagellum, radius a, length L, which is attached to the cell body radially. A helical 
wave propagates along the flagellum with amplitude a and linear wavelength A. 
The organisms to which this model apply include bacteria and eukaryotes. The major 
difference between these two groups is in the structure of the flagellum. The eukaryotic 
flagellum is an order of magnitude larger than the bacterial flagellum. 

The hydrodynamic model as developed in I employs slender body theory for Stokes' 
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flow. This allows the flagellum to  be represented by distributions of stokeslets and 
dipoles along its centre-line. The sphere is represented by two sets of singularities. 
The first set consists of an image system which cancels the velocity on the sphere 
induced by the singularities along the flagellum. The second set is composed of the 
stokeslet, dipole and rotlet needed to match the velocity on the sphere due to trans- 
lation and rotation. 

The introduction of the singularities transforms the no-slip boundary condition 
into a set of singular integral equations for the singularity distributions. TO solve 
these equations, the kernel is evaluated analytically over short intervals, and the 
results used to set up a system of linear algebraic equations. An iteration procedure 
is used to solve these equations numerically. 

There have been several efforts to model the use of helical waves with resistance 
coefficients. Holwill & Burge (1963) examined helical waves in studying the locomotion 
of bact,eria. Chwang & Wu (1971) considered helical waves for a wide variety of para- 
meters covering many organisms. They introduced the concept of moment coefficients 
to  calculate the moment due to rotation of the flagellum about its centre-line. Coakley 
& Holwill(l972) considered more general waves, including helical waves with elliptical 
cross-section and varying amplitude. In  each of these studies, the force on the cell 
body was calculated using Stokes’ drag formula, and the interaction of the cell body 
and flagellum was ignored. In  addition, the flagellum and cell body were considered 
in isolation, avoiding consideration of the form of the junction between the two. 

In  the present work, the swimming motion is analysed to determine the effect of 
the parameters on the swimming speed and efficiency of the organism. The model is 
used to  assess the accuracy of the resistance coefficient models and to determine the 
importance of the factors which have been ignored in previous models. 

2. Velocity induced by singularity distributions 
Applying slender body theory to the problem of flagellar propulsion, it was shown 

in I that the flagellum can be represented by distributions of stokeslets and dipoles 
along its centre-line. The errors in this approximation are order O(a/L). 

A stokeslet a t  the point X is defined by 

where 
r = Ix-XI. 

A dipole a t  the point X is defined by 

The velocity induced by distributions of stokeslets and dipoles along the flagellum 
is given by 

where f and d are the stokeslet and dipole distributions and the integration extends 
along the flagellum. 
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It was shown in I that the dipole strength is determined by the component of 
stokeslet strength normal to the centre-line. I n  particular 

where T is the unit vector tangent to the flagellum, and a is the radius of the flagellum. 
To account for the presence of the spherical cell body, the stokeslet S j k  in ( 3 )  must 

be replaced by the Green's function for the flow external to a sphere. This is accom- 
plished by adding the terms which constitute the image system for the sphere. 

The Green's function has the form: 

Gjk(X,  x, = X j k ( X ,  x) + s : k ( x ,  x), (5) 

where X j k  is the stokeslet and h':k is the image system for the sphere. The exact 
expression for G j k  was derived by Oseen (1927)  and is given in I, equation (3).  

Adding the image system to (3) ,  the expression for the induced velocity now has 
the form: 

This integral is evaluated by dividing the flagellum into N intervals in which f is 
assumed constant. The image system 8Tk is singular inside the sphere, but well be- 
haved along the flagellum. Thus, it may be integrated easily by numerical methods. 
The functions Xi, and Djk  are integrated analytically. Performing these operations 
and using (4) to  eliminate d, the induced velocity can be expressed in the form: 

N 

n= 1 
u j ( x )  = 2 ( [ K j k ( X ,  x(s~)) f Hjk(x, x(sn)lfk(sn)), (7) 

wheref,(s,) is the value off in the nth interval, and X(s,) is the midpoint of the nth 
interval. Hjk is the result of the numerical integration of the image system 85, and 
K j k  represents the terms integrated analytically. The exact expressions for Hjk and 
K j k  are given in I ,  equations (23) and ( 2 7 )  respectively. 

The expression in equation (7 )  gives the velocity induced by the singularities along 
the flagellum and their images in the sphere. 

3. Kinematics of flagellar motion 
I n  this section, we consider the specification of the position and velocity of points 

on the flagellum when it  assumes the form of a helical wave. A helical wave with 
constant amplitude a and wavenumber k is specified by: 

(x, y, z )  = (x, a cos (kz - w t ) ,  a sin (kx - w t ) ) .  (8) 

For the organisms under consideration, we have assumed that the flagellum is 
attached to the cell body radially. If this condition is to be satisfied with the wave 
(8), the centre of the cell body must be displaced from the helical axis (see figure l a ) .  
This situation occurs with a number of organisms; but in general, these have very 
irregular wave forms and are outside the class of organisms we wish to consider in 
this paper. To place the cell body on the helical axis, consider a slight modification of 
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FIGURE 1.  (a) Constant amplitude helical wave showing displacement of the cell body off the 
helical axis. ( b )  Modified wave with cell body centred on helical axis. 

the helical wave. The wavenumber k remains constant, but the amplitude of the wave 
is modified by the function: 

E(x)  = [i -exp [ - (kEx)2] ] .  (9) 

This function has the properties: E(0)  = 0, E’(0)  = 0 and E(x)  grows very rapidly 

The new helical wave is specified by 
to its asymptotic value, E(m) = 1. 

(10) 

(see figure 1 b ) .  
Observe that the modified wave has a short ‘end region’ in which its amplitude 

increases rapidly, after which it is identical to the constant amplitude wave. 
To obtain a co-ordinate system ( X ,  Y , Z )  consistent with the analysis of I, the 

origin is placed a t  the centre of the sphere with the X axis along the helical axis. 
The Y and Z axes are chosen such that the sphere does not rotate with respect to this 
frame. Call this co-ordinate system the body frame. 

(x, y, z )  = (x, E(z)  a cos (kx - wt) ,  E(x)  a sin (kx- wt) )  

In the body frame, the flagellum is attached to the cell body a t  the point: 

x, = (X,,O,O), 

and the helical wave is expressed: 

X(X, t )  = ( X ,  E ( X  - X,) 01 cos (k (X  - X,) - wt) ,  E ( X  - X,) asin ( k ( X  - X,) - w t ) )  ( i  i )  

(see figure 2). 
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FIGURE 2. Wave form and co-ordinate system for locomotion by helical waves. 

When the position of a point on an inextensible flagellum is given by X(s, t )  where 

(12) 

8 is the arclength measured from X,, the velocity of the point is given by 

a 
u(s ,  t )  = - X(s, t ) .  

at 

The arclength s as a function of X and t is expressed as 

Substituting from ( 1  l),  we obtain: 
X 

xo 
s = / [ 1 + (akE(X))' + ( o I E ' ( X ) ) ~ ] *  d X .  (14) 

Note from this expression that s is a function of X only and is independent oft. There- 
fore, 

a a 
- X(s, t )  = - X(X, t ) .  at at 

Thus, the velocity of points on the centre-line of the flagellum is obtained by differen- 
tiating (1  1 )  with respect to t .  

Differentiating (1 1) yields: 

u ( X ,  t )  = (0, waE(X -X,) sin (k(X - X,)  -wt ) ,  - waE(X - X,)  cos (k(X - X,) - wt)) .  
(16) 

(17) 

Note that this velocity may be written in the form: 

U P ,  t )  = (- w, 0,O) x ( X ,  y ,  21, 
where ( X ,  Y ,  2) is given by ( 1  1) .  

This shows that the helical wave formed by transverse bending waves on an in- 
extensible flagellum is equivalent to the rotation of a rigid helix of the same form. 
The motion of the centre-line is identical; however, the velocity on the surface of the 
flagellum is different. The surface in the wave motion remains fixed with respect to 
its centre-line, while the surface of the rigid helix rotates about its centre-line. 

At this point, it  is convenient to define certain wave parameters not previously 
specified. The linear wavelength h equals 27r/k, and the linear wave speed V equals 
w l k .  The curvilinear wavelength A and wave speed c are not constants, due to the 
varying amplitude of the helical wave. Outside the special 'end region', they vary 
negligibly and their values are 

A = h[ l  + aakz]* and c = V[1+ a2k2]*. (18) 
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The number of wavelengths Nh is defined as the extension of the flagellum in the 
X direction divided by A, the linear wavelength. The length of the flagellum is given by 

L = ["A { 1 + [.kB(x)]2 + [aE'(2)]2}4 dx. 
J o  

This completes the specification of the wave motion. 

4. Boundary conditions 
The no-slip boundary condition requires that the velocity of a point on the surface 

of the flagellum equal the velocity of the fluid a t  that point. The velocity of points 
on the flagellum with respect to the body frame is given by (17) .  The body frame is 
assumed to have velocity U, and angular velocity $2, with respect to the rest frame. 
Thus, the velocity of a point X on the flagellum with respect to the rest frame is 
expressed by 

UR(X) = u,+$2, x x+ (-f iJ ,O,  0) x x. (20) 

The cell body has velocity U, and angular velocity SZ, with respect to the rest frame. 
The singularities needed to match this velocity on the surface of the sphere are: 8 
stokeslet and dipole for translation, and a rotlet for rotation. The velocity field pro- 
duced by these singularities is 

(see Happel & Brenner, 1965). 

of the flagellum with the velocity induced by the singularities. This is expressed as 
The boundary condition on the flagellum is now expressed by equating the velocity 

N 

where uR is the velocity of the flagellum, uH is the induced velocity due to translation 
and rotation of the cell body, and the summation gives the velocity induced by the 
singularity distributions along the flagellum and their images as derived in 5 2. 

By evaluating this expression ( 2 2 )  a t  the N points: X(s,), we obtain 3N equations 
in the 3N + 6 unknowns: f (sn ) ,  U, and $2,. 

The six additional equations come from the force and moment balances. 

5. Force and moment balances 
The organism is self propelled and is not influenced by any external forces. There- 

fore, the total force and moment on the organism are zero. As a stokeslet corresponds 
to a point force, the condition of zero force is equivalent to the total stokeslet strength 
being zero. To find the total stokeslet strength, we consider the contribution of the 
stokeslets along the flagellum, their images in the sphere and the stokeslet due to 
translation of the sphere. The stokeslet due to translation has strength 6?~pAUo. To 
find the strength of the images, consider the radial and transverse components of a 
stokeslet on the flagellum. 
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Let F be a stokeslet on the flagellum. Write F in the form 

337 

where the first bracket is the radial component and the second is the transverse com- 
ponent with respect to the sphere. 

The strengths of the radial and transverse images were given in I, equations (7) 
and (8) respectively. Adding these image strengths, the total force on the organism 
due to the stokeslet F and its image is 

where 

(26) 
3 A  1 A 3  3 A  1 A 3  

+--3, and C - ---- - -  
T -  41x1 4(X[3’ 

c,= --- 
21x1 21x1 

Summing over all stokeslets on the flagellum and adding the contribution due to 
translation of the ‘sphere, the force balance yields 

where 28sn is the length of the nth interval. 
For the moment balance, the contribution from the radial stokeslets is zero. The 

strength of the image rotlet in the sphere is given in I, equation (8). The moment 
about the centre of the sphere due to a stokeslet F a t  the point X and its image is 

The moment about the origin due to the rotation of the sphere is 8npA3Q0. 
Summing over all stokeslets on the flagellum, the moment balance becomes 

6. Solution of equations 
The complete set of equations is composed of the boundary condition ( 2 2 ) ,  the 

force balance (26) and the moment balance (28). This is a set of 3N + 6 equations for 
the 3 N + 6  unknowns: f (sn) ,  Uo and Qo. The solution of these equations is by an 
iteration procedure. 

First, the boundary condition ( 2 2 )  is modified b y  making the following definitions: 

&jk(Sm, sn) = K j k ( X ( S m ) ,  x(sn))  + H j k ( X ( S m ) ,  x ( sn ) ) ;  (29) 

The boundary condition is now written as 
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Equation (31) is multiplied by the inverse of P,k and rearranged to obtain 

This expression is used to define the iteration. The right-hand side of the equation 
depends on the previous values off, while the left-hand side defines the next iteration. 
At each iteration, (32) is used to eliminate f from the force and moment balances, 
which are then solved simultaneously for U, and Q,. The details of this procedure 
are described in I. Details of the computing are given in the appendix to this paper. 

The solution of the system of equations defines the motion of the organism at a 
single instant of time. In general, the solution must be obtained at  several instants in 
the cycle, and the quantities integrated to find the average swimming speed and power 
consumption. In the case of helical waves, we shall see that it is sufficient to evaluate 
a t  a single instant of time. 

Consider a frame whose origin coincides with that of the body frame, but which 
rotates with angular velocity ( - w,  0,O) with respect to the body frame. Call this the 
phase frame. In  the phase frame, the flagellum appears stationary, while the cell 
body rotates with angular velocity ( w ,  0,O).  Because the flagellum is stationary, and 
the cell body is spherical, the motion at  any instant during the cycle is indistinguish- 
able from any other instant. Therefore, the solution in the phase frame is independent 
of time. 

The velocity of the phase frame with respect to the rest frame is U,, while the 
angular velocity of the phase frame with respect to the rest frame is: 

Qp = ( Q O I  - w,  a,*, (33) 

The phase frame rotates with constant angular velocity Qp with respect to the rest 
frame and translates with constant velocity U,, where U, is referred to the phase 
frame. These conditions imply that the origin of the phase frame moves along a 
helical path with the helical axis parallel to the rotation vector nP. Thus, the dis- 
placement of the cell body over a .cycle is in the direction of Qp and the average 
swimming speed is the component of Uo parallel to Qp. The average swimming speed 
is expressed : 

i7 = (Uo.Qp)/IQpl. (34) 
The power consumption of the organism is obtained by integrating the product of 

the force and the velocity over the surface of the organism. This calculation may 
be performed with the velocity referred to any frame, because the total force and 
moment are zero. In  the body frame, the velocity on the cell body is zero, and the 
power consumption may be calculated by summing the contributions along the 
flagellum. 

Thus, the power is expressed as 

N 

n= 1 
P = E C f ( ~ n ) . ~ ( ~ n ) I 2 ~ ~ . n ,  (35) 

where u is given by (1 7). 
From the discussion of the phase frame and the fact that the power is independent 

of the frame, we conclude that the power is independent of time. Therefore, the 
average power consumption P is identically equal to the instantaneous power P 
defined by (36). 
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7. Results 
In this section, we consider the effect of changes in the parameters on the swimming 

speed and power consumption of the organism. In  particular, we wish to find the 
combination of parameters which leads to the optimal swimming motion. The optimal 
swimming motion is considered to be that which requires the minimum power to 
achieve a given swimming speed. 

The organism consists of a spherical cell body, radius A ,  propelled by a single 
flagellum, radius a, length L .  The flagellum forms a helical wave whose shape is 
specified by (1  1).  The wave parameters are NA, cck and Iclk,. 

The average swimming speed is considered in the non-dimensional form a/ V .  The 
power consumption is non-dimensionalized as 

70’ = P j 6 ~ p A 8 ~ .  (36) 

The minimum value of 7;’ defines the optimal swimming motion for the organism; 
hence, it is called the inverse efficiency. 

The five parameters to be considered in evaluating the optimal motion are the 
wave parameters: NA, a k ,  k l k ,  and the body parameters: a/A, LIA. First, we consider 
variation in the wave parameters for organisms with given body parameters. When 
the optimal wave form is found for each organism, we consider variation in the body 
parameters to  determine the optimal configuration. 

The swimming speed as a function of the number of waves NA, is shown in figure 3. 
In this figure, a / V  is shown for three different length flagella with the parameters 
ak and k / k E  taking fixed values (which we shall see are their optimum values). In 
each case, the swimming speed rises rapidly to a maximum, and falls off gradually 
as NA increases past the maximum. To explain this behaviour, we consider the role 
of the cell body in the swimming motion. 

As described in $3,  the helical wave is equivalent to the rotation of a rigid helix 
with angular velocity w. This motion generates a torque on the organism which must 
be balanced by the counter rotation of the cell body with an angular velocity Q. 
This counter rotation reduces the effective rotation rate of the helix to w -  Q. The 
swimming speed is reduced proportionately. 

As the number of waves on the flagellum is increased, while the wave remains 
geometrically similar, the amplitude and wavelength decrease. The torque on the 
flagellum is proportional to the length times the square of the amplitude of the wave. 
Therefore, increasing the number of waves reduces the torque by reducing the ampli- 
tude. This reduces Q and hence increases the effective rotation rate of the helix. 
Thus, the swimming speed increases its the number of waves is increased. 

The slow decay in swimming speed after the maximum has been reached is due to 
a different effect. The basis of flagellar propulsion is the fact that the resistance of a 
long slender body is much greater for normal motion than for tangential motion. AS 
the thickness of the body increases, this effect is reduced. In the case of waves travelling 
on a flagellum, the significant parameter is the logarithm of the ratio of wavelength 
to flagellar diameter. As the wavelength decreases, this slenderness ratio decreases, 
and the mechanism becomes less effective. 

The behaviour of the curves in figure 3 can now be explained. Consider first the 
case of the shortest flagellum, L / A  = 5. The swimming speed reaches a maximum at 

12-2 
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FIGURE 3. Average swimming speed as a function of number of waves. Curves are shown 
for three different length flagella with a / A  = 0.02. Wave parameters: ak = 1 ; k / k E  = 1. 

N,, = 1.  At this point, the two mechanisms described above are balanced; that  is, 
any further decrease in fi will be a t  the cost of a reduction in the ratio of wavelength 
to diameter and will not increase the swimming speed. For the case L / A  = 10, the 
maximum swimming speed is reached a t  N,, = 3. As the flagellum is longer in this 
case, the cell body is less effective in providing a balancing torque, and the amplitude 
of the wave must be decreased by splitting the flagellum into a larger number of 
waves. Also, the longer length of the flagellum means that more waves may be em- 
ployed before the ratio of wavelength to diameter becomes too small. This trend is 
further demonstrated in the case L / A  = 20, for which the maximum swimming speed 
occurs at a value of N,, > 6. 

The power consumption as a function of N,, is shown in figure 4. The first point to 
notice is that the optimal swimming motion does not occur a t  the same point as the 
maximum swimming speed, but a t  a value of N,, a t  which the swimming speed begins 
to  level off. The optimal values of N,, in the three cases are: N,, = 1 for L / A  = 5 ;  
N,, = 1.5 for L / A  = 10; and N,, = 4.5 for L / A  = 20. 

I n  examining the behaviour of qol in figure 4, we return to  the role of the cell body 
in the swimming motion. The power required to rotate the cell body is quite large 
compared to the power required for the flagellum. Thus, it is essential to  reduce the 
rotation rate of the cell body. Increasing the number of waves decreases the rotation 
rate, and hence decreases the power consumption. At the same time, it increases the 
swimming speed, leading to  a further reduction in q;l. 

We noted above that the propulsive mechanism relies on the fact that  the normal 
forces are much larger than the tangential forces. As the slenderness ratio is reduced, 
the ratio of the normal force to the tangential force decreases. The resultant decrease 
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FIGURE 4. Power consumption in the non-dimensional form (36) as A function of number of waves. 
Curves are shown for three different length flagella with radius a / A  = 0.02. Wave parameters: 
ak = 1; k / k E  = 1. 

in swimming speed causes an increase in qol. I n  addition, the magnitude of both 
force components increases when the slenderness ratio is decreased. This produces a 
further increase in ~ol. 

A third effect which becomes important when the number of wavelengths grows 
large is the interference between neighbouring waves. When the waves are too close 
together, the velocity induced by one segment acts on its neighbours to increase the 
drag on the flagellum. This factor, together with the increase in the magnitude of the 
forces, causes the optimal value of NA to be reached before the swimming speed reaches 
its maximum. The optimal value is reached when the increase in swimming speed is 
insufficient to  offset the increase in power consumption. 

The power consumption as a function of ak is shown in figure 5 for three different 
length flagella. I n  each case, the optimum value is approximately ak = 1. This 
corresponds to  a segment of the flagellum ma,king an angle of 45" with the helical 
axis. For values ofak < 1 ,  the reduced angle means that each segment of the flagellum 
contributes a smaller thrust per unit length. The low swimming speed which results 
contributes to a higher qol. For large values of ak ,  the increased power consumption 
is due to  a combination of factors. The increased amplitude increases the torque 
causing the cell body to rotate faster. As stated above, this requires a large power 
expenditure and decreases the efficiency. I n  addition, increasing ak, while holding the 
other wave parameters constant, reduces the wavelength. This brings neighbouring 
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FIGURE 5. Power consumption (36) as a function of ak. Curves are for three different length 
flagella with radius a/A = 0.02. Wave parameters: optimum N,, k / k E  = 1. 

waves closer together and decreases the efficiency due to interference between the 
waves. 

The swimming speed as a function of ak is shown in figure 6. The swimming speed 
reaches its maximum value a t  ak = 2. For the organisms with shorter flagella 
(LIA = 5, lo), the swimming speed remains constant a t  larger values of ak; while 
the swimming speed of the organism with the longest flagellum (LIA = 20) de- 
creases slightly for ak > 2. We note that the maximum swimming speed occurs at 
a much greater angle than the angle for the optimal swimming motion. The optimum 
value of ak is the value for which an increase in swimming speed is just offset by the 
increase in power consumption. If ak increases further, the swimming speed continues 
to increase, but a t  an ever greater energetic cost. This explains why the maximum 
swimming speed occurs a t  a larger ak than the optimal motion. 

The final wave parameter to be considered is klk,. This parameter is a measure 
of how quickly (i.e. over what distance) the helical wave reaches its full amplitude - 
starting a t  zero amplitude at the point of contact with the cell body. The smaller 
klk,, the more rapidly the amplitude increases to its maximum value. For example, 
a value klk, = 1 means that the wave reaches 90% of its maximum amplitude in 
the first quarter wavelength. For klk, = 2, the wave reaches 50% of its maximum 
in the first quarter wavelength. 

Figure 7 shows the dependence of 7;' on klk,. For the case: LIA = 20, NA = 4.6, 
the power consumption varies negligibly over the values of klk, considered. For 
LIA = 10, NA = 1.5, the power consumption remains virtually unchanged up to 
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FIQURE 6. Average swimming speed as a function of ak. Curves are for three different length 
flagella with radius a / A  = 0.02. Wave parameters: optimum Nn; k/kE = 1. 

k/kE = 5, after which it increases rapidly. Similarly, for L / A  = 5 ,  Nh = 1, the power 
is unchanged up to klk, = 3 and then increases rapidly. The rapid increase in power 
in these two cases reflects the fact that, for the respective values of k/kE,  the wave is 
far below its optimal amplitude over a major portion of the flagellum. We conclude 
that the value of k/k, does not affect the efficiency of the swimming motion, except 
in circumstances where the 'end region' occupies a substantial fraction of the flagellar 
length . 

In  summary, we find that the optimal helical wave form has ak = 1, and that the 
optimum number of waves depends on the length of the flagellum. In general, the 
optimum number of waves increases faster than the length of the flagellum. Thus, 
the optimal wavelength decreases slowly as the flagellar length increases. The para- 
meter k / k E  does not have an optimal value, but must be small enough for the wave 
to reach full amplitude within a small fraction of its length. 

We turn our attention to consideration of the body parameters a / A  and LIA. 
Figure 8 shows power consumption qr1 as a function of a / A .  All three organisms show 
a slight increase in qol as the flagellar radius increases. The primary cause of this 
increase is that the cell body is less able to resist the torque of the thicker flagellum, 
and hence has a higher rotation rate and power consumption. In  addition, the in- 
creased radius of the flagellum decreases the slenderness ratio, making the swimming 
motion less efficient. This effect is slight, as it depends on the ratio of the normal to 
tangential forces, whereas the increased rotation rate of the sphere results from the 
increased magnitude of the forces. The increase in power consumption is largest for 
the organism with the longest flagellum (LIA = 20), because it is the least able to 
resist the torque generated on the flagellum. 
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FIGTIRE 7. Power consumption (36) as a function of k / k E .  Curves are for three different 
length flagella with radius a / A  = 0.02. Wave parameters: optimum NA and ak. 

The swimming speed as a function of a / A  is shown in figure 9. The speed varies 
negligibly for L / A  = 5 and L / A  = 10, because the slight increase in thrust due to the 
thicker flagellum is offset by the reduced effective rotation rate of the helix. The 
rotation rate is reduced, because the increased torque on the flagellum increases the 
counter rotation of the cell body. The swimming speed for L / A  = 20 decreases slightly 
with increasing flagellar radius, because the cell body is less effective at  countering 
the torque in this case. 

It is interesting to compare the results of figure 9 with the conclusions of Chwang & 
Wu (1971) who found that the swimming speed V reached a maximum for a / A  
in the range 0.02 < a / A  < 0.07. In figure 9, we see very little variation in this range 
and no maximum value. The explanation for this disparity is that Chwang & Wu 
plotted the curves holding L/a  constant, while the curves in figure 9 have L / A  constant. 

To examine this problem further, we look a t  the swimming speed as a function of 
L / A  holding a / A  constant (figure 10). The curves show that the swimming speed 
increases rapidly as the length of the flagellum increases, levelling off near L / A  = 20. 
For the small values of L / A ,  the flagellum is too short to effectively propel the organ- 
ism. This is due to interference with the cell body, which is proportionately more 
important for a short flagellum than for a long one. For very long flagella, the extra 
thrust generated by the extra length is negated by the reduced effective rotation rate 
of the helix. Once again, this is due to the increased torque on the flagellum. 

By considering the dependence of D/V on a / A  and LIA separately, we can deter- 
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FIGURE 8. Power consumption (36) as a function of flagellar radius, a / A ,  for three different 
length flagella. Wave parameters: optimum Nh, ak and k / k E .  
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FIGURE 9. Average swimming speed as a function of flagellar radius a / A ,  for three different 
length flagella. Wave parameters: optimum NA, cuk and k / k E .  
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FIGURE 10. Average swimming speed aa a function of flagellar length L / A  for three different 
flagellar radii. Wave parameters: optimum ak and k/kE. N ,  equals value for maximum swimming 
speed o / V .  

mine how a maximum swimming speed is achieved. The first point to note from figures 
9 and 10 is that a maximum swimming speed is not found for either a / A  or L/A 
independently. We find that the maximum swimming speed depends on a combination 
of the parameters. If we allow a / A  and L / A  to increase together as Chwang & Wu 
did, we find that, for low values of the parameters, the swimming speed increases as 
the parameters increase, just as the swimming speed increases for increasing length 
in figure 10. For larger values, the swimming speed decreases as the parameters 
increase, as seen for the curve L / A  = 20 in figure 9, in which a / V  decreases for 
increasing radius. Thus, by allowing the parameters a / A  and LIA to increase con- 
currently, a maximum swimming speed is found. Although the maximum depends 
on the values of both parameters, a comparison of figures 9 and 10 shows that the 
swimming speed is more sensitive to changes in the flagellar length than to changes 
in its radius. 

The question of maximum swimming speed and its dependence on the parameters 
is very interesting, but it is not as important from a biological standpoint as the 
determination of the optimal swimming motion. The power consumption as a function 
of flagellar length L / A  is shown in figure 11. In  contrast to the result for maximum 
swimming speed, there is a clear minimum in the power consumption as a function of 
fla*gellar length. The optimal length is L / A  = 10 when the radius is a / A  = 0-10 and 
LIA w 12 when the radius is in the range: 0.02 c a / A  c 0.04. When the flagellum 
is shorter than the optimum length, i t  is less effective a t  propelling the organism 
due to its proximity to the cell body. The interference with the cell body reduces the 
swimming speed and increases the power consumption. When the flagellum is longer 
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FIGURE 11. Power consumption (36) as a function of flagellar length L / A  for 
three different flagellar radii. Wave parameters: optimum N,, ak and k / k E .  

than the optimum length, it requires more power, while producing only a marginal 
increase in swimming speed. This reduces the efficiency. 

It is interesting to  note that the optimum flagellar length is much shorter for helical 
waves than for the plane waves examined in I. This result may be explained by the 
fact that  all segments of the helix contribute to the thrust, while for plane waves, 
some segments produce drag only. This result corresponds to  the situation found 
among actual organisms, in which the organisms with shorter flagella employ helical 
waves, while those with longer flagella employ plane waves. There are, of course, 
exceptions to  this rule, including many organisms whose wave form changes from 
planar to  helical as it travels along the flagellum. 

I n  summary, we find that the optimum flagellar length is approximately LIA = 10. 
The power consumption varies slowly with flagellar radius, decreasing as a / A  de- 
creases over the range of physically realistic radii. The swimming speed of the organism 
increases monotonically with increasing LIA and decreases monotonically with 
increasing radius a l A .  If the ratio of the two parameters is held constant, a maximum 
swimming speed is found which depends on the ratio Lla. 
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FIGURE 12. Average swimming speed as a function of flagellar length, L/A,  showing difference 
between exact calculation and two resistance coefficient models. Flagellar radius a / A  = 0.02. 
Wave parameters: optimum N,,, a k  and k / k B .  - , exact; --- , Gray-Hancock; -- -, 
Lighthill. 

8. Effectiveness of resistance coefficients 
To evaluate the validity of previous models, we consider the accuracy of two resist- 

ance coefficient models in estimating the swimming speed and power consumption of 
an organism. The simplest form of resistance coefficient which has long been used by 
workers in the field is based on the asymptotic results obtained by Hancock (1953). 
These coefficients were first used by Gray & Hancock (1955) and have proved quite 
accurate in determining the swimming speed of organisms using plane waves (see I, 
5 10). The Gray-Hancock coefficients are of the form: 

4nlC 
In [2h/a] + 0.5’ 

K -  2 v  and K N  = 
- In [2h/a] - 0.5 (37) 

where h is the linear wavelength. 
Lighthill (1976) analysed the use of helical waves and obtained an exact solution 

for the swimming speed and power consumption of an infinite helical wave. He used 
this result to formulate improved resistance coefficients. First, he specified tangential 
and normal coefficients to be used to calculate the zero thrust part of the force dis- 
tribution. These coefficients are expressed as 

where A is the curvilinear wavelength and q = 0.09A. 



Fluqellar propulsion: helical waves 349 

so0 

400 

300 

no' 

200 

I 00 

0 

j/ 

/' 
/' 

/ 

10 20 30 40 so 
L l A  

FIGURE 13. Power consumption (36) aa a function of flagellar length, L/A,  showing difference 
between exact calculation and two resistance coefficient models. Flagellar radius a / A  = 0.02. 
Wave parameters: optimum NA, ak and k/kE. - , exact; --- , Gray-Hancock ; - - -, 
Lighthill. 

In  calculating the component of force which generates a net thrust, he suggested 
that the force could be crudely estimated by a single coefficient giving thrust per unit 
length divided by velocity. The thrust coefficient has the form: 

The parameter qx depends on the values of the wave parameters. For a graphical 
specification of qx and a complete discussion of the model, see Lighthill (1976, pp. 
21 3-221). 

Figure 12 shows the swimming speed as a function of flagellar length, as calculated 
by the method of this paper and by the two resistance coefficient models. Both resist- 
ance coefficient models overestimate the swimming speed for short flagella (LIA < 15). 
This is due, in part, to the fact that these models do not consider the interference of 
the cell body. The Gray-Hancock model continues to overestimate the swimming 
speed by approximately 20 % over the entire range of lengths considered. The Lighthill 
model underestimates the swimming speed for organisms with &/A > 16, but is 
within 10 yo of the actual swimming speed over the entire range of L / A .  It is interesting 
to note that the Lighthill model is most accurate over the range 10 < L / A  < 20, a 
range in which a large number of actual organisms are found. 
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The power consumption vol as a function of flagellar length is shown in figure 13. 
The Gray-Hancock model underestimates the power consumption over the range of 
L / A  by approximately 50 yo. The Lighthill model underestimates the power for 
L / A  < 10 and overestimates for L/A > 10. The underestimate for short flagella is 
rather extreme, due to the failure to account for the interference with the cell body. 
A second problem is that shorter flagella employ fewer wavelengths, making the 
assumptions of the Lighthill model less valid. The overestimate for L/A > 10 is 
approximately 25 yo. Once again, the Lighthill model is most accurate over the range 
of L / A  in which many actual organisms are found. 

The overall conclusion is that resistance coefficients can given an accurate estimate 
for the swimming speed, but are unsuccessful in estimating the power consumption, 
especially for organisms with relatively short flagella (or alternatively, large cell 
bodies) - L / A  M 5 .  As this length is characteristic of protozoa, it may be regarded 
as a serious failure of resistance coefficient models. Finally, we note that for helical 
waves, the Lighthill model is clearly superior to the Gray-Hancock model. 

I am indebted to Professor M. J. Lighthill for helpful comments and suggestions. 
I wish to acknowledge the support of the National Science Foundation through the 
Graduate Fellowship Program. 

Appendix. Computing 
The numerical procedures employed in this paper divide the flagellum into N 

segments. All segments were of equal length with the exception of the segments at 
the ends, which were chosen to be not less than twice the diameter of the flagellum. 
All calculations were performed using IBM 370 double precision to avoid errors in 
dealing with large numbers whose difference is very small. The large matrices were 
stored as single precision to save storage space. 

The iteration procedure converged wihh an error of less than 1 % in the swimming 
speed and power consumption after four iterations. The iteration was carried further 
to ascertain that this was a true convergence. 

The number of segments required varies according to the values of the wave para- 
meters, but for a typical case, 20 segments per wavelength produces an error of less 
than 1 yo. 

For a general three-dimensional wave with the flagellum divided into 40 segments, 
the calculations required approximately 8 s of CPU time on the IBM 370. 

To test the accuracy of the image system, the velocity was evaluated a t  points on 
the boundary. The exact expression for the Green’s function was compared with its 
far field expansion, and the Cartesian expression was checked against the simpler 
result for the radial component. 

To test the accuracy of the solution, the calculated velocity was compared with the 
velocity of the flagellum a t  points along the flagellum. Comparisons were made with 
asymptotic theories based on force coefficients with calculations done both analytically 
and numerically. 
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